ANT+ Wireless Technology
Monitoring Solutions
For Sport, Fitness AND Health
SONY XPERIA Z3 , S Health 3.0
Link to ANT+ Wearable Technology
Flagship products connect to ANT+ ecosystem of health, fitness and sport devicesABOUT ANT+
ANT+ is an interoperability function that can be added to the base ANT protocol. This standardization allows for the networking of nearby ANT+ devices to facilitate the open collection and interpretation of sensor data. For example, ANT+ enabled fitness monitoring devices such as heart rate monitors, pedometers, speed monitors, and weight scales can all work together to assemble and track performance metrics. This data could grant a user a more holistic view of their fitness progress.ANT is an open access multicast wireless sensor network technology designed and marketed by ANT Wireless featuring a wireless communications protocol stack that enables semiconductor radios operating in the 2.4 GHz industrial, scientific, and medical allocation of the RF spectrum ("ISM band") to communicate by establishing standard rules for co-existence, data representation, signalling, authentication, and error detection.
ANT Wireless is a division of Dynastream Innovations Inc. (a Cochrane, Canada-based company), which became a subsidiary of GPS equipment manufacturer Garmin in 2006.
The ANT protocol is available on low-power RF transceiver chips from manufacturers such as Nordic Semiconductor (since 2005)[1] and Texas Instruments (since 2010),[2] as well as combination connectivity transceiver chips from manufacturers such as Broadcom, MediaTek or Qualcomm used in cellphones, tablets, etc. Currently a typical ANT protocol transceiver is a black box that comes pre-loaded with the protocol software and must be controlled by an external application processor via a UART, SPI, or USB interface. New ANT transceivers are also available in a SoC where an external application processor is not required.
ANT is characterized by low computational overhead and low to medium efficiency,[citation needed] resulting in low power consumption by the radios supporting the protocol and enabling low power wireless embedded devices that can operate on a single coin-cell battery from months to years.
APPLICATIONS
ANT has been primarily targeted at the sports sector, particularly fitness and cycling performance monitoring. The transceivers are embedded in equipment such as heart rate belts, watches, cycle power, and cadence meters, and distance and speed monitors to form wireless Personal Area Networks (PANs) monitoring a user's performance.
- Manufacturers such as Adidas, Garmin,[4] Geonaute,[5] Nike, Suunto, Fitbit[6] and Tacx[7] have used ANT technology in their performance monitoring products.
TECHNICAL INFORMATION
ANT can be configured to spend long periods in a low-power “sleep” mode (consuming of the order of microamps of current), wake up briefly to communicate (when consumption rises to a peak of 22mA (at -5dB) during reception and 13.5mA (at -5dB) during transmission)[8] and return to sleep mode. Average current consumption for low message rates is less than 60 microamps on some devices.
Comparison with Bluetooth, Bluetooth Low Energy, and ZigBee
Versions of the Bluetooth prior to v4.0 were designed for music (the SCO and eSCO synchronous transports), rapid file transfer (ACL, asynchronous transport) between devices in a PAN such as a PDA, cell-phone, and portable computer that focused on applications with lower bandwidth requirements than that offered by WiFi. Previous and current versions of Bluetooth are not designed for large wireless sensor networks but were and still are capable of forming star networks of up to eight devices (one master and seven slaves).[9] In comparison ANT was designed for low bit rate, large scale sensor network topologies that require very low, coin cell class power consumption at every node.
Bluetooth 3.0 introduced the AMP (Alternative MAC/PHY) controller which means that Bluetooth can use WiFi for quick and efficient transport when both technologies are collocated in one device. This is labelled as 3.0+HS. A Bluetooth 4.0+HS device can depending on selection of transports efficiently transport data using Low Energy, Standard Bluetooth or WiFi. Apple has recently qualified devices as 4.0+HS. Similar functionality on ANT can be implemented at the application level for any devices incorporating both ANT and WiFi (or any high data rate transfer technology). As well, ANT-FS or ANT File Share is a technical specification allowing larger file transfers to be performed in an interoperable fashion at up to 60 kbit/s over the ANT protocol.
Bluetooth SMART is a wireless specification including radio, link layer protocols, transport protocols and ways to describe data released for low power wireless embedded devices that can operate on a single coin-cell battery from months to years, such as Wireless Sensor Network, watches, and sports equipment similar to ANT. Currently, Bluetooth SMART supports a scatternets and broadcasting between devices. A mesh can easily be implemented on top of the scatternet. A single hop typically has communication range between 50 m to 100 m (330 ft). SMART is the hallmark feature of Bluetooth 4.0.
Dual-mode core chip supporting Bluetooth and SMART will give SMART a quick start in the mass market of smartphones, laptops, tablets etc. This advantage of integration will also allow SMART to compete against other short range technologies, but in addition ANT has also benefited from this scale as ANT and SMART share similar RF characteristics, allowing manufacturers such as Qualcomm to include ANT as well in their connectivity devices for smartphones, tablets, etc. While SMART cannot currently compete with 6LoWPAN, ZigBee, or WirelessHART in applications requiring a large multi-hop coverage area (ANT can support mesh, but while most applications in sports are currently single hop, some devices are demonstrating usage of multi-hop such as bicycle pedal power meters, which connect pedal-to-pedal-to-cyclocomputer), SMART can compete in short-range single-hop applications.
SMART has debuted in devices on the market late 2011 with notable support in the iPhone with Android support coming. Microsoft has also publicly stated their support for Bluetooth SMART and their first API's are in Windows 8. Bluetooth SMART chips are already in the mass market and provided by companies such as Nordic Semiconductor, Texas Instruments, CSR, Taiyo Yuden, Epson, Quintic, Broadcom, Qualcomm, EM microelectronics, ST and many more.[citation needed] In comparison, ANT debuted onto the smartphone market in late 2010 with Sony Ericsson entering the ANT+ Alliance, and is currently supported by a unified ANT Radio Service which provides a common interface for developers to create apps across Android versions and ANT hardware such as USB sticks connected through USB OTG. Samsung has also declared their support with the launch of the Galaxy Note 3 and joined the ANT+ Alliance in 2013.
A more direct comparison can be drawn with ZigBee. ZigBee is based on the IEEE 802.15.4 standard PHY and Media Access Control (MAC) layers, and supports the ZigBee Alliance's own Network (NWK) and Application (APL) layers (refer to the OSI model). ZigBee's IEEE 802.15.4 PHY for the 2.4 GHz frequency band has an on-the-air data rate of 250 kbit/s,[10] compared to ANT's 1 Mbit/s,[8] requiring ZigBee to stay on air longer than ANT to transmit a given volume of data.
0 comments:
Post a Comment